
 

 
 

 

UbiComp09 project: aMir 

Group B 

Amirhosein Azarbakht 
Efraín Calderon 

Karl Löfholm 
Alexander Neumann 



 

1 
 

Introduction 

In context of the course “Ubiquitous Computing” during the autumn term 2009 

we developed a prototype of an augmented mirror called “aMir”. 

 

The project took five weeks. During that time we have developed a concept, tried 

out different hardware solutions and evaluated the system itself. In addition a 

user interface was designed and implemented. In the next chapter we want to 

picture the concept of aMir and give a brief introduction to the used hardware 

components. In the third chapter the realization approach is described. 

Afterwards, we present the result of our work. This includes the product aMir, 

but also includes the evaluation of approaches we had to evaluate and reject 

because of several issues. In the last chapter, we want to give a summary and 

suggest possible further work that can be done within the project context. 



 

2 
 

Concept 

The concept of having a mirror, which will serve as an informative medium, and 

assist people to be punctual, while relieving the stress of it, was chosen after a 

number of rounds of brainstorming and then receiving target user feedback. The 

process contributed to the evolutionary transformation of the raw idea into a 

fully-fledged product that is customized to the real needs of the individuals. 

 

This product is for everyone with a lot on their minds when preparing to go out 

through the door. It is perhaps best suited for people who live in bigger cities 

with well-developed public transportation system. In the city of Gothenburg, for 

example, the majority of the people use the trams and buses as their primary 

choice of transport. They, therefore, need to look up the schedule every time they 

want to go somewhere. This usually takes time, as well as energy, and causes a 

pause, but by integrating a schedule display into a mirror saves them a lot of 

trouble. The displaying of the weather is used to give the person a sense of how 

warm they should dress.  

 

Figure 1 - First concept sketch of aMir               Figure 2 - Second concept sketch of aMir 

 



 

3 
 

Approach 

Following we want to explain the project approach. We planned to start this 

project with having an introduction phase, which we used to define different key 

aspects of this product further. What materials to use, in what context should the 

mirror be used, what kind of input source is the most efficient and etc. After this 

we went through a design phase and started to design different kinds of 

solutions and after evaluating them, chose one design to realize further. 

Throughout this realization phase, we continuously evaluated the prototype and 

according to the evaluations, made small changes to the design. 

 

We decided to split up into smaller groups to divide responsibilities. One group 

focused on all hardware issues including finding suitable material and evaluating 

it. The other group focused on the user interaction and the software design and 

implementation. The advantage of this approach is quite obvious. The limited 

time amount made it impossible for every group member to get into every field 

of work. In addition it was possible to make more precise assumptions about the 

actual state and the work that had to be done. 

Amir and Efraín were in the hardware group. The task was to research and 

evaluate possible hardware solutions and testing material concerning its 

usefulness for the project. The software group consisted of Alex and Karl, to 

develop the user interface and deciding the information that should be shown 

was their main task. 

However, the groups were just a rough orientation. More than just once we 

assisted each other with every kind of task disregarding the associated group. 



 

4 
 

 

Table 1. Work Packages. The work was divided to 10 work packages.  

Name  Category  Description  Responsible  Duration  

WP1  Prototyping  
Getting to know the 
used technology related 
work and thinking 
about solutions  

everyone  2 weeks  

WP2  Hardware  Finding and 
testing a 
solution for a 
user detection 
functionality  

Efraín  3 weeks  

WP3  Hardware  Research and 
designing a 
hardware 
architecture of 
the mirror  

Amir  2 weeks  

WP4  Hardware  Getting special 
hardware like 
mirror and 
case  

Karl, Alex  2 weeks  

WP5  Hardware  Designing and 
implementing 
the control of 
the display  

Efrain, Amir  3 weeks  

WP6  Software  User Interface 
design  

Karl  1 week  

WP7  Software  Implementing 
the user 
interface  

Alex   

WP8 Documentation  Creating a 
website for 
the project  

Karl  2 weeks  

WP9  Documentation  Creating 
exhibition 
material and 
planning the 
presentation  

everyone  1 week  

WP10  Documentation  writing the 
report  

everyone  3 weeks  

 
 



 

5 
 

Table 2. Estimated schedule. This table shows how the work packages were spreaded 
across the time that was available. 

WW47  WW48  WW49  WW50  WW51  

WP1      

 WP2  WP2  WP2   

WP3  WP3     

       WP4  WP4   

 WP5  WP5  WP5   

    WP6     

    WP7  WP7  WP7   

             WP8 WP8  

   WP9  WP9  

    WP10  

 



 

6 
 

The Design Process 

The primary idea was an augmented mirror with Västtrafik information. The first 

idea to implement it was using an LED dot matrix, configured to show a number - 

indicating the minutes left to next bus departure. Then we thought it would be 

more beneficial if it could show weather information − current temperature of 

the city− as well. Having searched for similar previous projects, we found that it 

would be somehow banal and not-so-new; so, we came up with the motive of 

making something different, instead of just repeating what that has already been 

done. 

 

Obviously, we did not want to reinvent the wheel. Consequently, we went for 

end-user preferences and did a survey to see what other features they would like 

to have on the mirror, and the result was, on top of all, the view of the back of 

their head, and secondly, weather information, so that they would exactly know 

how cold it feels like outside. At some point, there was a suggestion that −instead 

of just showing the temperature in the form of a number− it would be more 

conventional to have a view of how people are dressed-up outside, i.e. a live cam 

view of a populated area in downtown, e.g. Brunnsparken in Gothenburg. 

 

 

For the back view feature, we opted to use an LCD display instead of the old 

stylish LED dot matrix. Then, the mirror had to be a good see-through mirror, 

a.k.a. spy glass or two-way mirror. We tested using a web-cam to capture the 

back view and showing it on the LCD display, and also, using a projector, -in front 

or from back- but, neither resulted in acceptable resolution. The idea of using a 

projector instead of LED/LCD was adopted to take advantage of the next 

generation cell phones, which, presumably, will have projection feature. That 

was an option, regarding near future expected technology possibility. Though, it 

proved to be unpromising. Unfortunately it is quite expensive to get a mirror or 

window glass that has the ability to show a projector image. We did some 

research and found an interesting solution developed by G+B pronova GmbH 



 

7 
 

called HoloProi. They developed mirrors, window glass and special foils that can 

be attached to ordinary mirrors or windows to show a projector image. 

Concerning the possibility of mobile phones having a built-in projector this 

solution seems quite promising. Unfortunately the creation process is still 

expensive. A 30" mirror would cost about 2900€ what is not covered by our 

budget. 

At some point, we thought of a solution to address the problem of mirrors getting 

foggy/misty in a steamy bathroom environment. A common solution is to use 

something like the voltage-resistant wires on back window of cars; which gets 

warmed up and warms up the glass, when electrical power passes through them. 

It has long been in use in car industry, hence, would not have contributed to the 

modern looks of our prototype. Moreover, we managed to find a demister pad as 

an alternative to voltage-resistant wires. 

 

Having re-thought of the whole concept once again, and having developed it, we 

could draw the conclusion that, now that we will be using an LCD as the display, 

we would go with the set of features comprised traffic information, weather 

information, date and time, and news headlines. The resulting prototype was 

splendid, and was kept as the eventual pleasing prototype. 

 

The design of the graphical user interface was 

inspired by “Dashboard software Apple 

Widgets”. These are lightweight single-

purpose applications, which are used to 

provide the user with a particular function 

such as weather information, ”post-it notes” 

and a calculator. The concept of aMir is very 

similar to the idea of using widgets on your 

computer desktop, supporting the 

functionality you often need. We just brought 

in to another context, the bathroom mirror. 

The Apple widgets have a very clean look and 

are often designed to be very user friendly and Figure 3 - Graphical user interface  



 

8 
 

the usage of the widgets is most often very clear to the user. This was also 

something that we wanted to bring in to the graphical interface of aMir. One 

constraint, though, was that we only could use black and white colors and text 

and icons had to be really big in order to be visual through the two-way mirror. 

The decision to display the information in the up right corner was also based on 

testing were the information displayed would interfere with the reflection of the 

mirror was minimal. 

To interact with the mirror we also designed a framework of physical 

interactions on how the user could interact with aMir. Specifications about the 

interactions are the following: 

Function Action Requirement 
Activate screen Hand in front of sensor 

(1sec) 
Screen is not activated 

Toggle between different 
setups 

Hand in front of sensor 
(0-2sec) and then 
remove the hand 

Screen is activated and 
different setups are 
defined 

Deactivate screen – 
manually  

Hand in front of sensor 
(2sec) 

Screen is activated 

Deactivate screen – 
automatically (time)  

None Screen is activated and 
no actions have been 
registered for some time 
(15min) 

Deactivate screen – 
automatically (light)  

Turn room dark (1min?) Screen is activated 

 



 

9 
 

Implementation 
To show the information an application written in Java 1.6 iiis used. This 

application uses the API from Västtrafficiii to get real time information about 

specific bus stops. In addition the weather.com APIiv is used to get weather 

information. The RSS feed is implemented with a RSS library provided by Sun. All 

this APIs deliver XML documents via HTTP GET. Those XML files were parsed 

with the JDOM libraryv. The GUI was created with the GUI builder of the 

Netbeansvi project. 

The prototypes and pretests we did were a huge help while building the actual 

prototype. The actual mirror consists of a mirror cabinet from IKEA called 

SALTSKÄR. We removed the mirror and included a double-side mirror from Olles 

Glasmästerivii that was cut by them into the right shape. We used a zelo m8 

display from X4-tech and mounted it behind the mirror. The controls were 

soldered to an Arduino with a custom made circuit to control them via serial 

commands. For the internet connection we used a Lenovo Thinkpad T61 that run 

the software and provided the GUI image as well.  

 

Figure 4 Development Stages 



 

10 
 

The following issues were tested by us: 

Visibility 

When using the VGA output the GUI is easy to see even if the surrounding light is 

not optimal. Unfortunately we faced some problems with the display that made it 

necessary to use the SVIDEO output instead. The lower resolution causes a major 

reduction of the video quality. The RSS feed is hard to read and the average 

reading distance is way shorter as well. 

Robustness (Software) 

The system runs very stable but depends highly on a fast Internet connection 

and a low answering time from the web services. Otherwise it will get stuck 

sometimes which reduces usage experience and make the shown data less 

reliable. A blocking http request blocks the serial connection as well what makes 

the mirror freeze for a couple of seconds. These problems were reduces by 

setting request time outs by hand.   

Usability 

We got a positive feedback concerning the GUI. Some people would like to see 

the names of the person's profile that is shown. The way of interaction was 

graded very good as well. Unfortunately the LDR-system is not working properly 

for changing surrounding light. The capacity changes are often very small and it 

takes some calibration if the light is changing. Especially while the exhibition it 

took us a lot of time to recalibrate the system. Under static circumstances the 

reaction was very low and the interaction could be done fluently. 

Design 

The approach of making the technology calm and invisible (ergo ubiquitous) 

seems to be a success. The display is almost invisible from the front side. While 

turned off it was completely invisible. Tester of the mirror mentioned that the 

size of the display was good and positioning was done very well as well. No 

tester felt annoyed by it or discovered the display without asking.   



 

11 
 

 

Summary 

Our intention is to provide a hidden interface, in the sense of the user not seeing 

the button that he/she is interacting with, or not even feeling that he is having 

interaction; the user’s eyes will be the only door to the perception of being 

actively connected to the mirror. The approach is to interact with the mirror 

with gestures since gestures are more natural and intuitive; actually, we always 

use gestures to interact with other people, to show them what we want them to 

do, or probably just to express how are. This work can be seen as a digital artifact 

that will give you the information that you need in your daily life, such 

information is the bus scheduled, weather and some news headlines, nothing 

else to avoid an overhead of the user. 

 

Future work 

One possible improvement may be taking advantage of a flat über-thin display 

instead of a thick hefty LCD display behind the mirror. The razor-thin display has 

already been developed, and hopefully, will be available widely in near future. 

Next generations of the aMir might probably go wireless, and the use of cable will 

be minimized, which will result in an easier installation and require significantly 

less time and expertise. 

Basic configurations in the next versions of aMir can be done in an easier way. 

Smart phones can be an option, though, we are investigating alternative ways to 

possibly bypass the use of any high-complexity device in connection to the 

design, and make it self-contained, and in accordance to its concept. 



 

12 
 

Related works 
A project by Fluid Interfaces Group at MIT, called Augmented Mirror: 

http://fluid.media.mit.edu/projects.php?action=details&id=17 

 

A project at the University of Tokyo, called i-Mirror, based on the mirror 

metaphor: 

http://themeaddicts.com/pages/mirror.html 

 

A commercial product, called Magic Mirror: 

http://www.vrsj.org/ic-at/papers/02113.pdf 

References 
                                                        
i  HoloPro, http://www.holopro.de/en/index/ 
 
ii Java 1.6, https://jdk6.dev.java.net/ 

 
iii Västtraffic API, http://labs.vasttrafik.se/ 

 
iv weather.com API, http://www.weather.com/services/xmloap.html 

 
v JDOM 1.1.1, http://www.jdom.org/ 

 
vi Netbeans, http://netbeans.org/ 

 
vii Olles Glasmästeri, http://www.ollesglas.se/ 

 

 

 
 
 
 
 
 

http://www.holopro.de/en/index/
https://jdk6.dev.java.net/
http://labs.vasttrafik.se/
http://www.weather.com/services/xmloap.html
http://www.jdom.org/
http://netbeans.org/
http://www.ollesglas.se/


 

13 
 

Appendix 1. 

 

Figure 1. Domain model of the aMir prototype 

 

  



 

14 
 

Appendix 2. 

LDR as a Button 
 
LDRs or Light Dependent Resistors are very useful especially in light/dark sensor circuits. 
Normally the resistance of an LDR is very high, sometimes as high as 1000 000 ohms, but 
when they are illuminated with light, resistance drops dramatically. 
 
This is a basic circuit that shows how an LDR works: 
 

 
 
Depending on the amount of light perceived by LDR1, the voltage VLDR1 will decrease. 
This voltage may be expressed as 
 

21

2

1

VLDR

V
LDR

RR

R
VccV


  

 
This means that when the LDR is exposed to light, there will be a very small voltage that 
would be interpreted as LOW logical level; by the other hand, when it is the darkness the 
LDR1 will have a higher voltage, which would be implemented as HIGH logical level. 
 
This looks complete easy, but there is a problem: not always is possible to reach complete 
darkness or a full brightness. Well, there is an easy way to go through this: 
 

1. Set the potentiometer such that the voltage in LDR1 changes enough from maximum 
brightness to minimum brightness. Expose the LDR to a lamp (trying to recreate the 
worst case scenario) and thereafter cover it. 

2. Take a middle point between both voltages as the limit between 
Activated/Deactivated. 

3. Set the size of the threshold. From this threshold will depend how sensitive is the 
LDR button. 



 

15 
 

 

 
 
Since the light conditions change constantly, aMir will calibrate itself according to the 
current light condition during the start up. The threshold was fix to 20 units (5 V / 1024) 
since it is enough to not detect movement beyond a distance of 3cm from the mirror 
surface. 
 
According to the testing these were de results: 
 

Threshold size 
(units) 

Max distance 
(approx.) 

Observations 

0 25 Sometimes Persons 
passing by were 
detected 

10 10 Some shadows activate 
the LDR button 

20 3 Sometimes some 
movements were not 
delectated 

30 1 Almost you have to 
touch the mirror 

40 1 Almost you have to 
touch the mirror 

60 0 You have to touch the 
mirror 

 
In order to manage this special kind of switches, an Arduino library was created; it was 
called AnalogSwitch (See Apendix). 
 
 



 

16 
 

Hacking the LCD Screen 
 
To show the video behind the mirror we used an LCD Screen (add more info). To be able to 
control the LCD from the Arduino we had to: 

1. Make a circuit to activate the screen button. We used relays since it is less intrusive 
and still allow us to have control using the original buttons. 

2. Create software able to generate the proper pulses to activate the screen. For this 
purpose we create the library Pulse (see Appendix) 

 
The circuit used to activate a single button is as the following: 

 
These are the buttons that were uses: 
Screen Button uC port Functionality 
Source + 3 Change the video source 
Power 4 ON: press it 3 sec. 

OFF: press once 
Menu 5 Special functions 
ANS 6 Toggles between: volume, 

brightness & contrast 
Vol+ 7 Volume up 

Adjust settings 
Vol- 8 Volume down 

Adjust settings 
 
 
 

The full schematic is shown in the following images: 

 



 

17 
 



 

18 
 

 

 

  



 

19 
 

Appendix 3. 

Arduino Software 
The software in compounded by the following modules: 
 
Mirror – Main module 
LcdControl – Controls the LCD 
Power Moding – Handles the behavior of aMir  
ProfileControl – Handles the events 
Communication – Interface PC-Arduino 



 

20 
 

Libraries

Periodic Tasks

Arduino Core

AnalogSwitchTimedAction SimpleMessageSystem Pulse

SPI GPIOADC

Comm Task

Profile control

Read Reansors
LCD Control

PowerModing
Main

Calibration

aMir 

Software

New Modules

Reused Modules

aMir software

(Arduino)

 
 

Power Moding 
 
As any other artifact, aMir has to handle different behaviors in many different scenarios. 
For aMir we have 3 main states: Off, Standby & On. The next table show how aMir will act 
upon its different states: 
  
Current Ambient Light LDR Screen Status  



 

21 
 

Sate Detection button 
Off Available Disable Off Only occurs 

during the start 
up 

Standby Available Limited Off Only to turn on 
the screen 

On Available Available On Screen On only 
when it’s light in 
the environment 

 

OFF_STATE

STANDBY_STATE

ON_STATE

Startup

OFF_Event/ 

[prevState = ON_STATE]

SHUTDOWN_Event / 

[prevState = ON_STATE]

Lights ON?

/else

prevState STANDBY?

/[Else]  
 
 

Communication PC - Arduino 
 
SimpleMessageSystemi is a library for Arduino 0004 and up. It facilitates communication 
with terminals or message based programs like Pure Data or Max/Msp. 
All serial input and output is interpreted as ASCII messages. 
    - Send, receive and parse lists of characters and integers to and from the Arduino Board. 
 
A message is a series of words, made from ASCII characters, separated by spaces and 
terminated by a carriage return (and an optional line feed). Messages are built using the 
following structure: 
 
       word1 (space) word2 (space) word3 (EOM) 
 
EOM = End of message: @ (0x44) 
 

Arduino code example 1: 

 
// Arduino code 



 

22 
 

        if (messageBuild()) { // Checks to see if the message is complete 
            firstChar = messageGetChar()) { // Gets the first word as a character 
            if (firstChar = 'r') { // Checking for the character 'r' 
                secondChar = messageGetChar() // Gets the next word as a character 
                if (firstChar = 'd') // The next character has to be 'd' to continue 
                     messageSendChar('d'); // Echo what is being read 
                     for (char i=2;i<14;i++) { 
                          messageSendInt(digitalRead(i)); // Read pins 2 to 13 
                     } 
                     messageEnd(); // Terminate the message being sent 
                } 
             } 
         } 
// Arduino code end 
 
 
If the preceding Arduino+SimpleMessageSystem code receives the message: 
 
           r d CR (CR stands for a carriage return) 
 
it will return the value of all the digital pins in a message taking the following structure: 
 
         d pin2 pin3 pin4 pin5 pin6 pin7 pin8 pin9 pin10 pin11 pin12 pin13 CR 
 
 

aMir Lingo 
 
A series of messages was generated to properly synchronize the PC application that will 
show the image in the screen.  
 
 

Messages PC -> Arduino (>>) 

 
Command 
 

Arg 1 Arg 2  Action 

'b' 
 
Activates a 
button to 
control the 
LCD 

‘0’   Activate Source 
Button 

‘1’   Activate Power 
Button 

‘2’   Activate Menu 
Button 

‘3’   Activate ANS 
Button 



 

23 
 

‘4’ 1-255: times that the 
button will be 
activated 

 Activate Vol+ 
Button 

‘5’ 1-255: times that the 
button will be 
activated 

 Activate Vol- 
Button 

'c' Calibration 
 

   Calibrate the LDR 
sensors 

‘l’  
Run the LCD 
setup function 

   Calls a function to 
adjust the display 

‘s’ 
 
Status 
confirmation 

‘0’   Start up 
‘1’   Stand-by mode 
‘2’   System is running 

 
 
 
Messages Arduino -> PC (<<) 
 
Command 
 

Arg 1 Arg 2  Action 

'S' 
Send the current status 
(this requires 
confirmation)  

‘0’   Start up 
‘1’   Stand-by mode 
‘2’   System is running 

‘N’ 
Request next profile 

   Request the next 
available profile 

 
 

Examples: 

 
1. Assuming that the LCD is off, turn it off and select the next A/V source. 
   
     >>  b 1@   // Power button 
     >>  b 0@   // source button 
 
 
2. Assuming that the LCD is on, set the brightness to the minimum. 
   
     >>  b 3@    // ANS button (Volume) 
     >>  b 3@    // ANS button (Brightness) 
     >>  b 5 25@ // Press Vol- 25 times (maybe that is enough) 
 



 

24 
 

3. Assuming that the system is starting up, the arduino shall inform to the pc about its 
status. 
   
     <<  s 0@    // Start up 
     >>  S 0@    // Confirmation 
 
 

Source Code: 

 

Mirror.pde 

 

#include <TimedAction.h> 
#include "ioConfig.h" 
#include "mirror.h" 
#include "lcdControl.h" 
#include "communication.h" 
 
// void systemRunningLED(); 
 
// set pin numbers: 
 const int ledPin =  13;      // the number of the LED pin 
 
 // Variables will change: 
 int ledState = LOW;             // ledState used to set the LED 
 long previousMillis = 0;        // will store last time LED was updated 
 
 // the follow variables is a long because the time, measured in miliseconds, 
 // will quickly become a bigger number than can be stored in an int. 
 long interval = 200;           // interval at which to blink (milliseconds) 
 
TimedAction readSensorsAction = TimedAction(25, readSensors); 
TimedAction lcdPollingAction = TimedAction(150, lcdPolling); 
 
 void setup() 
 { 
   setupComm(); 
   calibrateLdrButton(); 
   setupLcdControl(); 
 } 
 
 
 void loop() 
 { 
   readSensorsAction.check(); 
   lcdPollingAction.check(); 
   PowerModingTask(); 
   //Testing  
   commTask(); 



 

25 
 

   delay(10); 
 } 
 
 
 void systemRunningLED() 
 { 
     // if the LED is off turn it on and vice-versa: 
     if (ledState == LOW) 
       ledState = HIGH; 
     else 
       ledState = LOW; 
 
     // set the LED with the ledState of the variable: 
     digitalWrite(ledPin, ledState); 
 } 
  
 void readSensors() 
 { 
    ButtonsTask(); 
    systemRunningLED(); 
 } 
  
 // This function is called peridocalli to detect if 
 // any button was pressed 
 void lcdPolling() 
 { 
     lcdTask(); 
 } 
 
 
Mirror.h 
 
#include "WProgram.h" 
 
// Set it to true to see debugging information 
#define _DEBUG_MODE_IS false 
 
 
ioConfig.h 
 
#ifndef IOCONFIG_H 
   #define IOCONFIG_H 
 
   // analog 
   #define ldrButtonPort 1 // buttton for profile switchinf  
   #define ldrSensorPort       2 // detect if there is light or not 
 
   // digital 
   #define srcControlPin      2 // settings 
   #define powerControlPin    3 
   #define menuControlPin     4 // settings 
   #define ansControlPin      5 
   #define volPlusControlPin  6 
   #define volMinusControlPin 7 // settings 
    



 

26 
 

#endif 
 
 
Communication.pde 
 
#include "lcdControl.h" 
#include <SimpleMessageSystem.h> 
 
void commTask() 
{ 
 
  if (messageBuild() > 0) 
  { // Checks to see if the message is complete and erases any previous messages 
    switch (messageGetChar()) 
    { // Gets the first word as a character 
    case 'b': // Activate the a button from the LCD display 
      activateButton(); // Call the readpins function 
      break; // Break from the switch 
    case 'c': // calibrate 
      autoCalibrate(); 
      break; 
    case 'l': // calibrate 
      setupLcdControl(); 
      break; 
    case 's': // calibrate 
      notificationOfStatus(messageGetInt()); 
      break; 
    } 
 
  } 
 
} 
 
//Setup the communication 
void setupComm() 
{ 
   Serial.begin(9600); 
} 
 
// Decodes a message to activate the proper button 
void activateButton() { 
  int data; 
  switch (messageGetInt()) { // Gets the next word as a integer 
 
    case POWER_BTN :  
       pressOnOffButton(); 
    break;  // Break from the switch 
    case MENU_BTN :  
       pressMenuButton(); 
    break;  
    case ANS_BTN : 
       pressAnsButton(); 
    break; 
    case SRC_BTN : 
       pressSrcButton(); 



 

27 
 

    break;  
    case VOL_PLUS_BTN : 
       data = messageGetInt(); 
       pressVolPlusButton(data); 
    break; 
    case VOL_MINUS_BTN : 
       data = messageGetInt(); 
       pressVolMinusButton(data); 
    break;   
    default :  
       //nothing 
    break; 
  } 
} 
 
// this function executes the required calibration 
void autoCalibrate() { 
   calibrateLdrButton(); 
 } 
 
Communication.h 
 
#include "WProgram.h" 
 
void commTask(); 
void activateButton(); 
 
lcdControl.h 
 
#include <Pulse.h> 
#include "lcdControl.h" 
#include "ioConfig.h" 
 
#define pulseWidth      50 //ms 
 
// Set the GPIO used to control the LCD 
Pulse powerPulseControl(powerControlPin, 3000);   
Pulse menuPulseControl(menuControlPin, pulseWidth);   
Pulse ansPulseControl(ansControlPin, pulseWidth);   
Pulse srcPulseControl(srcControlPin, pulseWidth);   
Pulse volPlusPulseControl(volPlusControlPin, pulseWidth);   
Pulse volMinusPulseControl(volMinusControlPin, pulseWidth);   
 
void setupLcdControl() 
{ 
   // during the set-up turn on the screen 
   pressOnOffButton(); 
    // Its called twice to set the screen to S-Video 
   pressSrcBtutton(); 
   pressSrcBtutton(); 
} 
 
void lcdTask() 
{ 
   powerPulseControl.polling(); 



 

28 
 

   menuPulseControl.polling(); 
   ansPulseControl.polling(); 
   srcPulseControl.polling(); 
   volPlusPulseControl.polling(); 
   volMinusPulseControl.polling(); 
} 
 
void pressOnOffButton() 
{ 
  powerPulseControl.trigger(); 
} 
void pressMenuButton() 
{ 
  menuPulseControl.trigger(); 
} 
 
void pressAnsButton() 
{ 
  ansPulseControl.trigger(); 
} 
void pressSrcButton() 
{ 
  srcPulseControl.trigger(); 
} 
 
void pressVolPlusButton(int num) 
{ 
  volPlusPulseControl.trigger(num); 
} 
void pressVolMinusButton(int num) 
{ 
  volMinusPulseControl.trigger(num); 
} 
 
 
lcdControl.h 
 
#ifndef  LCD_CONTROL_H  
   #define  LCD_CONTROL_H  
#include "WProgram.h" 
 
//enumerate the buttons 
enum lcdButtons 
{ 
   SRC_BTN, 
   POWER_BTN, 
   MENU_BTN, 
   ANS_BTN, 
   VOL_PLUS_BTN, 
   VOL_MINUS_BTN, 
   MAX_NUM_BTN, 
}; 
 
void setupLcdControl(); 
void pressOnOffButton(); 



 

29 
 

void pressInputButton(); 
void pressVolMinusButton(int num); 
 
#endif 
 
powerModing.pde 
 
#include "AnalogSwitch.h" 
#include "powerModing.h" 
 
#define OFF_DELAY   10000 
 
static int currentPowerState = OFF_STATE; 
static int newPowerState = STANDBY_STATE; 
static int prevPowerState = OFF_STATE; 
static unsigned long startTime; 
static unsigned long curTime; // this is global variable 
unsigned int lightSensorLevel; 
boolean goToPrevStateFlag = false; 
boolean changeFlag = true; 
 
TimedAction refreshPowerStateAction = TimedAction(750, refreshPowerStatePolling); 
AnalogSwitch lightSensor(ldrSensorPort, lightSensorLevel, 0); 
 
 void PowerModingTask() 
 { 
   switch(currentPowerState) 
   { 
      case OFF_STATE: 
         //Call initialization or any other setup 
         offState(); 
      break; 
      case STANDBY_STATE: 
         //Call initialization  
         standbyState(); 
      break; 
      case ON_STATE: 
         //Call 
         standbyState();  
      break; 
   } 
   //Update the the current state 
   if(newPowerState != currentPowerState) 
   { 
      currentPowerState = newPowerState; 
      //SendNotificationOfStatus(currentPowerState); 
   } 
   refreshPowerStateAction.check(); 
 } 
 
 void offState() 
 { 
   currentPowerState = STANDBY_STATE; 
   delay(500); 
 } 



 

30 
 

  
 void standbyState() 
 { 
     ExecuteDuringStandby(); 
 } 
 
 void onState() 
 { 
     ExecuteDuringOn(); 
 } 
 
 void ExecuteDuringStandby() 
 { 
   checkLightLevel(); 
 } 
  
 void ExecuteDuringOn() 
 { 
   //Check the ambient light level 
   checkLightLevel(); 
  
 } 
  
 int CurrentPowerState() 
 { 
    return currentPowerState; 
 }  
 
 void notificationOfStatus(int data) 
 { 
 } 
  
  void refreshPowerStatePolling() 
 { 
   SendNotificationOfStatus(newPowerState); 
 } 
  
 void SendNotificationOfStatus(int data) 
 { 
      messageSendChar('S');  
      messageSendInt(data); 
      messageEnd(); 
 } 
  
 void checkLightLevel() 
 {    
      if(lightSensor.Read() && changeFlag) 
      { 
           #if _DEBUG_MODE_IS 
           Serial.println("there is NO light"); 
           #endif 
           prevPowerState = currentPowerState; 
           newPowerState = STANDBY_STATE; //Turns off the screen 
           goToPrevStateFlag = true; 
           changeFlag = false; 



 

31 
 

      }else 
      if(goToPrevStateFlag && !lightSensor.Read()) 
      { 
         #if _DEBUG_MODE_IS 
         Serial.println("there is  light"); 
         #endif 
         newPowerState = prevPowerState; 
         goToPrevStateFlag = false; 
         changeFlag = true; 
         SendNotificationOfStatus(newPowerState); 
      } 
 } 
 
powerModing.h 
 
#ifndef  POWER_MODING_H  
   #define  POWER_MODING_H  
#include "WProgram.h" 
 
 
enum PowerState 
{ 
   OFF_STATE, 
   STANDBY_STATE, 
   ON_STATE 
}; 
 
#endif 
 
 
profileControl.pde 
 
#include "AnalogSwitch.h" 
#include "ioConfig.h" 
 
#define LDR_WAIT_TIME 500 //milliseconds  
#define LDR_NEXT_TIME 300 //milliseconds 
#define TIME_FOR_INACTIVITY  15000 
#define TRESHOLD_WIDTH  10 
 
unsigned int ldrTimeStamp; 
unsigned int ldrElapsedTime; 
unsigned int lastActionTimeStamp; 
unsigned int levelLdrButton; 
AnalogSwitch selectBtn(ldrButtonPort, levelLdrButton, TRESHOLD_WIDTH); 
boolean selectBtnActive = false; 
 
void ButtonsTask(void) 
{ 
  if(selectBtnActive) 
  { 
     if(selectBtn.Read()) 
     { 
        //nothing 
     } 



 

32 
 

     else //Button released 
     { 
        #if _DEBUG_MODE_IS 
        Serial.println("end"); 
        #endif 
        selectBtnActive = false; 
        ldrElapsedTime = millis() - ldrTimeStamp; 
        performAction(); 
     } 
  } 
  else 
  { 
     if(selectBtn.Read()) 
     { 
        ldrTimeStamp = millis(); 
        selectBtnActive = true; 
        #if _DEBUG_MODE_IS 
        Serial.println("Start"); 
        #endif 
     } 
  } 
  // Go to stand by for inactivity 
  if(CurrentPowerState() == ON_STATE) 
   { 
      if((lastActionTimeStamp > (millis() + TIME_FOR_INACTIVITY))) 
      { 
         ScreenOff(); 
      } 
   }    
} 
 
 
void performAction(void) 
{ 
   long int currentTime = millis();  
  //Change profile 
   #if _DEBUG_MODE_IS 
   Serial.println("Action"); 
   #endif 
   if((CurrentPowerState() == STANDBY_STATE)) 
   { 
      if(ldrElapsedTime > 1500) 
      { 
         //Deactivate the screen 
         ScreenOn(); 
      } 
   } 
   else if(CurrentPowerState() == ON_STATE) 
   { 
      if((ldrElapsedTime > 50) && (ldrElapsedTime < (1500))) 
      { 
         ReqNextProfile(); 
      } 
      else if(ldrElapsedTime >  1500) 
      { 



 

33 
 

         ScreenOff(); 
      } 
   } 
   #if _DEBUG_MODE_IS 
   Serial.println(ldrElapsedTime); 
   #endif 
   lastActionTimeStamp = millis(); 
} 
 
void ScreenOff(void) 
{ 
   #if _DEBUG_MODE_IS 
   Serial.println("turn Off screen"); 
   #endif 
   newPowerState = STANDBY_STATE;  
} 
 
void ScreenOn(void) 
{ 
   #if _DEBUG_MODE_IS 
   Serial.println("turn On screen"); 
   #endif 
   newPowerState = ON_STATE; 
    
} 
 
void ReqNextProfile(void) 
{ 
      messageSendChar('N');  
      messageEnd(); 
     #if _DEBUG_MODE_IS 
     Serial.println("Next profile"); 
     #endif 
   
} 
 
void calibrateLdrButton(void) 
{ 
   long int ldrButtonValueSum = 0; 
   long int ldrSensorValueSum = 0; 
   //long int ldrSensorValueSum = 0; 
   //long int ldrSensorValueSum = 0; 
   long int timmer = millis() + 3000; 
   int i = 0; 
    
   // calibrate during the first seconds  
   while (millis() < timmer) { 
     ldrButtonValueSum += analogRead(ldrButtonPort); 
     ldrSensorValueSum += analogRead(ldrSensorPort); 
     i++; 
     delay(100); 
   } 
   // set the values 
   selectBtn.SetTriggerLevel((ldrButtonValueSum / i) + 2*TRESHOLD_WIDTH); 
   lightSensor.SetTriggerLevel(ldrSensorValueSum / i *2 ); 



 

34 
 

    #if _DEBUG_MODE_IS 
    Serial.print("LdrButton is set to: "); 
    Serial.println(ldrButtonValueSum / i); 
    //Serial.Println("Ldr is set to: %d", levelLdr); 
    #endif 
    selectBtnActive = false; 
} 
 
 
Pulse.cpp 
 
#include "WProgram.h" 
#include "Pulse.h" 
 
/* 
 * two-wire constructor. 
 * Sets which wires should control the motor. 
 */ 
Pulse::Pulse(int pin, unsigned long ms) 
{ 
  this->init_time = millis();      // time stamp in ms since the pin will be active 
  this->inverted = false;          // this is an inverted pulse (LOW active) 
  this->active = false;            // current state of the pin 
  this->width_ms = ms;             // amount of time that the pin will be active 
  this->n_pulses = 0;              // number of pulses left 
  this->wait = false;              // wait flag 
  this->wait_time = 10;            // wait this time to start the next pulse 
   
  // Arduino pin used: 
  this->pulse_pin = pin; 
 
  // setup the pins on the microcontroller: 
  pinMode(this->pulse_pin, OUTPUT); 
  digitalWrite(pin, LOW); 
   
} 
 
/* 
 * two-wire constructor. 
 * Sets which wires should control the motor. 
 */ 
Pulse::Pulse(int pin, unsigned long ms, boolean inverted) 
{ 
  this->init_time = millis();      // time stamp in ms since the pin will be active 
  this->inverted = inverted;       // this is an inverted pulse (LOW active) 
  this->active = false;            // current state of the pin 
  this->width_ms = ms;             // amount of time that the pin will be active 
  this->n_pulses = 0;              // number of pulses left 
  this->wait = false;              // wait flag 
  this->wait_time = 10;           // wait this time to start the next pulse 
   
  // Arduino pins for the motor control connection: 
  this->pulse_pin = pin; 
 
  // setup the pins on the microcontroller: 



 

35 
 

  pinMode(this->pulse_pin, OUTPUT); 
  digitalWrite(pin, HIGH); 
   
} 
 
// Allow to set the pulse width 
void Pulse::setWidth(unsigned long ms) 
{ 
  this->width_ms = ms; 
} 
 
/* 
  Generates a single pulse 
 */ 
void Pulse::trigger(void) 
{   
  if (!(this->active)) { 
      this->init_time = millis(); 
   this->active = true; 
   startPulse(); 
   this->n_pulses = 1; 
   } 
} 
 
/*  
  Generates a train pulse. 
  n  Number of pulses 
*/ 
void Pulse::trigger(int n) 
{   
  if (!(this->active)) { 
      startPulse(); 
      this->active = true; 
   this->n_pulses = n; 
   } 
} 
 
/* Ininitates the pulse generation*/ 
void Pulse::startPulse() 
{   
  
   this->init_time = millis(); 
   if (this->inverted) { 
   // get the timeStamp of when you stepped: 
      digitalWrite(this->pulse_pin, LOW); 
   } 
   else{ 
   digitalWrite(this->pulse_pin, HIGH); 
   } 
   Serial.print("pressed pin "); 
   Serial.println(this->pulse_pin); 
} 
 
/* 
  This functions MUST be called periodically 



 

36 
 

 */ 
void Pulse::polling(void) 
{   
     
  if (this->active) { 
   // does it have to wait to triggger the next pulse or not? 
   if(!this->wait) 
   { 
      // move only if the appropriate delay has passed: 
      if (millis() - this->init_time >= this->width_ms){ 
      // get the timeStamp of when you stepped: 
      digitalWrite(this->pulse_pin, !(digitalRead(this->pulse_pin))); 
      this->wait = true; 
   this->n_pulses --; 
   } 
   } 
   else { //if it does have to wait 
      if (millis() - this->init_time >= this->wait_time){ 
      // get the timeStamp of when you stepped: 
      startPulse(); 
      this->wait = false; 
   } 
   } 
   if(this->n_pulses == 0) 
   { 
  this->active = false; 
   } 
  } 
} 
 
void Pulse::toggle(void) 
{ 
  this->inverted = !(this->inverted); 
} 
/* 
  version() returns the version of the library: 
*/ 
int Pulse::version(void) 
{ 
  return 1; 
} 
 
 
Pulse.h 
 
 
#ifndef Pulse_h 
#define Pulse_h 
 
// library interface description 
class Pulse { 
  public: 
    // constructors: 
    Pulse(int pin, unsigned long ms); 
    Pulse(int pin, unsigned long ms, boolean inverted); 



 

37 
 

 
    // toggle method: 
 void toggle(void); 
    void polling(void); 
 void setWidth(unsigned long ms); 
 void trigger(void); 
 void trigger(int n); 
 
    int version(void); 
 
  private: 
 void startPulse(void); 
 
    boolean inverted;        // high pulse or low pulse 
    boolean active;          // the pulse is active 
    boolean wait;            // the pulse is in wait mode 
    unsigned long init_time;    // delay between steps, in ms, based on speed 
    unsigned long width_ms;     // ms that the puls will last 
    unsigned long wait_time;    // delay between steps, in ms, based on speed 
    int n_pulses; 
    int pulse_pin; 
}; 
 
#endif 
 
 
AnalogButton.cpp 
 
#include "WProgram.h" 
#include "AnalogSwitch.h" 
 
/* 
 * two-wire constructor. 
 * Sets which wires should control the motor. 
 */ 
AnalogSwitch::AnalogSwitch(int aPin, int triggerLevel, int threshold) 
{ 
  // Arduino pin used: 
  this->aPin = aPin; 
   
  this->triggerLevel = triggerLevel; 
  this->threshold = threshold; 
  setActive(false); 
  this->inverted = false; 
 
} 
 
boolean AnalogSwitch::Read(void) 
{ 
   int data = analogRead(this->aPin); 
   if(data > (this->triggerLevel + this->threshold)) 
   { 
      setActive(true); 
   } 
   else if(data < (this->triggerLevel - this->threshold)) 



 

38 
 

   { 
      setActive(false); 
   } 
   #if 1 
   if(this->aPin ==0) { 
   Serial.print("["); 
   Serial.print(this->triggerLevel - this->threshold); 
   Serial.print(", "); 
   Serial.print(this->triggerLevel + this->threshold ); 
   Serial.println("] "); 
   Serial.println(data);} 
   #endif 
   return this->state; 
} 
 
void AnalogSwitch::InvertedMode(boolean inverted) 
{ 
   this->inverted = state; 
} 
 
void AnalogSwitch::setActive(boolean state) 
{ 
   if(this->inverted) 
   { 
      this->state = ~ state; 
 
   } 
   else 
   { 
      this->state = state; 
   } 
} 
 
void AnalogSwitch::SetTriggerLevel(int level) 
{ 
   this->triggerLevel = level; 
   setActive(false); 
} 
 
 
AnlaogSwitch.h 
 
#ifndef AnalogSwitch_h 
#define AnalogSwitch_h 
 
// library interface description 
class AnalogSwitch { 
  public: 
    // constructors: 
    AnalogSwitch(int aPin, int triggerLevel, int threshold); 
    // methods 
 boolean Read(void); 
 void InvertedMode(boolean inverted); 
 void SetTriggerLevel(int level); 
 



 

39 
 

  private: 
    int aPin;                // analog pin number 
    int triggerLevel;        // current level 
    int threshold;           // threshold size(+/-) 
 boolean inverted;        // used to handle the switch as active in low 
 boolean state;           // activated/deactivated flag 
 void setActive(boolean state); // activate/deactivate 
}; 
 
#endif 

 

                                                           
i http://tof.danslchamp.org/ 

      Contact: tof [at] danslchamp [dot] org 

 


	UbiComp09 project v.2
	Appendix

